
TWO SLITS IN A STRIP OF FINITE THICKNESS 
PMM Vol.34, Np2, 1970, pp.366-369 

B. I. SMETANIN 
(Rostov-on-Don) 

(Received May 20, 1969) 

We consider the following two plane mixed problems of the theory of elasticity. The 
problem of stretching a strip weakened by two equal length longitudinal slits, and the 
problem of longitudinal splitting of a strip by means of a wedge of finite length (*) . 
In the second problem, slits appear on each side of the wedge. Both, the slits and the 
wedge are symmetrical with respect to the edges of the strip. 

The method of solution employed is analogous to that developed in @I. The formulas 
obtained define the form of the slit surface and the normal stress intensity coefficient, 

and represent asymptotic expansions of the exact solutions in negative powers of the 

parameter L = h / b characterizing the relative thickness of the strip. 

1. The problem of stretching L atrip weakened by two tlitr, 

I-:_[ 

Two slits of equal length b - a (Fig. 1) are 

present in an elastic infinite strip of thickness 
211. The slits are symmetrical with respect to 

the strip edges and the surface of the slits is 
load-free. The edges of the strip are either 

displaced outwards by a given distance 6, or 

Fig. 1 
are acted upon by an uniformly distributed 

tensile load of intensity p. We require to find 
the form of the slit surface y (x) and the normal stress intensity coefficient N, the stress 
appearing outside the slits on the line produced from the slits. The boundary conditions 

of the problem are 

for Y=O 

fly=0 (a<IzI\(b), uy=O (lzl<u, b<lzl), %,,=” C’<Izi! (1.1) 
for y=fh, @<IsI 

(1) Uv = rt_ 6, ZXll = 0, (2) Uy = j, 6, ux = 0, (3) bu = p, zxv = 0 (1.2) 

The plus and minus signs correspond to the upper and lower edge of the strip. The 
problem can be reduced to an auxiliary problem with the following boundary conditions: 

for y = 0 

(1) uy=O, z,,=o, (2) uy=o, L&=0, (3) oy = 0, zzy = 0 

For the conditions (1) and (2) 

q = 2G&-1 (1 - Y) (1 - 2v)-l 

(1.4) 

where G is the shear modulus and Y is the Poisson’s ratio. For the condition (3) q = p. 
The problem with the boundary conditions (1.1) and (1.2) cna be solved by superimpo- 

sing the stress and strain fields on the solution of the auxiliary problem. These fields 

*) Contact problems for a strip with two equal regions of contact were dealt with in a]. 
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correspond to the displacement vector whose components are 

l&x = 0, Uy = h”&/ 

for the conditions (I) and (2) on the edges of the strip and 

l&x = 0, % = 0.5pG-f (1 - v)-1 (1 - 2~) Y 

for the condition (3). 
The function y (2) and the quantity N are the same for both, the initial and the auxi- 

liary problems. By symmetry. it is obvously sufficient to consider the region 0 d y < h, 
- OD<lZ<CR 

Methods of operational calculus are employed (33 to reduce the problem with the 

boundary conditions (1.3) and (1.4) to that of obtaining the function Y’ (~1 from the fol- 
lowing integral equation : 

(~+~,~~li,Q(~~~j~~=-~,~~ @\(151<4 
(1 

Q (t) = !L (u) sin (rot) du 

For conditions (1) to (3) the corresponding expressions for t (u) are 

(1.5) 

(1.6) 

(I) L(u)== sf&+~; 

(2) L(u)- 
x ch 2u + 2US + 0.5 (1 + x?) 

xsh2u-22u (x = 3 - 4Y) 

(3) L(u)= 2 g;;fu , L(u)41+O(e-2U) when u--+w 

Let us represent the kernel Q (t) of the integral equation (1.5) in the form 

Q (t) = ++ 5 ,42*+1 (1.7) 

i=o 

The constants ci are given by 

(1.8) 

and assume the following values for the conditions (l), (2) and (3) : 

2i + 3 
(2) et=- 

(3 + 2)f 
n2i+2fj *its (i=O,l,...) 

(2) (Y =-0.3) ‘co = 3.48, c1 = - 4.25, c2 = 0.518 
(3) cg = - 2.35, c1 = 1.69, cz = -0.844 

Here B,, are the Bernoulli numbers [4]. 

Inserting (1.7) into (1.5) and utilizing the fact that y’ (- 5) = - y’ (r), we obtain 
after simple ~ansformations 

Application of the inversion formula to (1.9) yields an integral equation of the second 
kind in y’ (z) 
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Y (x) = V/(x% - ay (b” - 5’) 

where 9 is a constant to be defined. seeking the solution of (1.10) in the form of a 
power series in h-2 we obtain 

T’ (xl= (I- Y) G-'R-l (x) [ P@l (x) + @)a (z)] (a Q x < b) (3.11) 

@r (2) = Gn-’ (1 - Y)-l (2 + (1 + a2 - 2x2 / b2) c&-2 + Il/a (5 - 2~2 + 5~4) + 

+ 2 (1 + e2) x2 / b2 - 6x4 / b*] c&-4 + 0 (h-6) 

a2 (5) = L/2qb2b (i + &2 - 2s2 / b2) + 0 (A-*) (1.12) 
e=&/b, $ = i - l/a cIk4A-4, k = vi - Eg 

Integrating (1.10) with respect to 5 and recalling that Y (a) = 0, we obtain 

y (3) = p, (nb)-52 (5) + I/% qbbG--’ (1 - v) x (z) + 0 (A-“) (I2 < I < b) (1.13) 

52 (5) = 2F (a, k) + x (5) c,&-~ + [(I + e2)x (5) + V4k4 F (w, k) + 2xb-3R (x)] c,h- 

x(x)-(~+%)F(o, k)- 2B (a, k) f 2 (bs)-l R (x), w = arc sin (k-l )/I - (a / @* 

where F (0, k) and E (0, k) are elliptic integrals of the first and second kind respecti- 
vely. The constant PI is found from the condition 

Y (b) = 6 (1.14) 

Setting y [z) from (1.13) into (1.14) we obtain 

P, = - ‘/aqnb2fi (2 - v) G-’ x (b)Q-’ (b) (1.15) 

The normal stress intensity coefficient N is defined for the points 5 = a and x = b by 

Na = Jim -r/ZTnsv (2, o)= lim -~/~_a 
Lx ws-II rw+o & Y (4 

-G 
Nb =a l!byo 6 - ba, (z, 0) = - .iy_, l/b - z l--y y’ (z) 

(1.16) 

Insertion of y’ (CC) from (1.11) into the right-hand sides of (1.16) yields 

N 

a 
= A@l(4 + 0% (4 

bkJ6 ’ 

N _ _ J’lU’l (b) + O)i (b) 
b- 

bk 1/g 
(1.17) 

Absolute convergence of the series (1.7) for t < 2 can be shown using the properties 

of the function L (u) . Hence, the results (1.13) and (1.17) obtained are valid for 
I < il < 00. In practice, the relations obtained 

can be employed rationally within the range 

2<L<=xWhen h-+~,wehavefrom(l.lZ) 

and (1.15) 
&@,1(a) +a,:: (a) = qb” [E(k)/K(k)-es’], 

P~~,1(b)+~~(b)=-qgb2[1-~(k)/K(k)](l.18) 

Fig. 2 Here K (k) and E (k) are complete elliptic 
integrals of the first and second kind respectively. 

From (1.17) and (1.18) it follows that the quantities Na and Nb coincide, as X -, 00, with 
the corresponding quantities obtained in the course of solution of the problem of two slits 
in a plane [S]. When h d 50 , the function Y (z) coincides with the analogous function 



Two slits in a strip of finite thickness 351 

obtained in [73 during the investigation of a problem of a slit in a semiplane whose 

boundary is clamped. although free to slide. The case investigated in p] also corresponds 
to the problem of two collinear slits of equal length on a plane. 

2, The problem of Bplftttng (L Itrip, Let an elastic infinite strip of thick- 
ness 2fi be split by means of a rigid, smooth wedge of length 2~. The wedge is situated 

symme~i~ally with respect to the edges of the strip, and the wedge thickness is 2rb. A gap 

of length b - a (Fig. 2) appears on each side of the wedge. The strip edges are displaced 

either outwards or inwards by a given distance 6, or are acted upon by an uniformly dis- 
tributed tensile ar compressive load of intensity p. We require to find the form of the 
slit surfaoes y ($1 and the normal stress intensity coefficient N at the points y = 0, 

3 = & (b -I- 0). The boundary conditions of the problem have the form 

One of the three conditions given in (1.2) holds at the strip edges for P = f li, O< 1 z 1. 
The problem can be reduced to an auxiliary problem with the boundary conditions 

for y = 0 r+ = fdQt# <a& uy = 0 (b Qt ~1) 

tay = --Q (a < 13 I 6 bf, a;y = 0 (0 +G t 211 (2%) 

using the method of superposition. Here one of the three conditions given in (1.4) holds 
fory= t k ; we have. as before, 4 = 2&&-x (Z - vi (1 - 2v)-i for conditions (1) and 

(21, and Q = P for condition (3). 
Methods of operational calculus can be used to reduce the problem with the boundary 

conditions (2.1) and (1.4) to that of finding the function y’ (z) from an integral equation 
of the form of (1,5f, consequently’ the expression defining the function y’ (~1 for the 

problem considered, shoutd have the form 

Y’ (2) = (1 - v)G-‘R-r (~1 lP,‘D,, (~1 + CD, (~$1 (a < cz G b) (2.2) 
where @r (z) and $ (z) are given by (1.12) and P$ is a constant to be determined. 

Unlike in the problem in Sect, 1, the function Y (*;t) in the present problem must satisfy 

the conditions y (a) = d, r (b) = 0 (2.3) 

hence we shall use the relation 

W%=d+jr’R)df @<z-G@ @-?Q 

where y’ (E) has the form of (2.2), t,” determine y (2) . Performing the necessary compu- 
tatfons according to (2.4), we obtain 

Y (x1 = d f pa (nb)-‘f2 (z) $ “/,qbpjG-’ fl - vfx (z) + 0 @-s) (2.51 

The constant P, obtained from (2.5) and the second relation of (2.3), is 

P, = --n&X- (bf fd + “/*qpG-1 Ii - v)x (@I + 0 (J-+1 (2-6) 

Inserting y’ (CE) given by (2.2) inta the second relation of (1.16) we find the normal 
stress intensity coefficient at the points z = * (6 + 0) 

1yb = - (bh 1/ 2b)’ IP#, (b) + % (@I (2.71 

The solution (2,5)-(2.7) obtained can be used with confidence within the range 
2 < X < 00. For h 4 w and the condition (3). from (1.12) and (2.6) we fiid 
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bdC 
p&‘l (b) + @a (b) = - (1 _ ,,) K (k) - pb2 E 6) 

’ - K (k) 1 (2.8) 

Equations (2.7) and (2.8) imply that when h -, x) , the value of Nr, coincides with that 
obtained in the problem on splitting an elastic plane with a wedge of finite width [S]. 

Moreover, when h -, DC , the expression (2.4). with (2.2) taken into account, defining 
Y (5) coincides with the analogous expression obtained in [S]. 

BIBLIOGRAPHY 

1. Aleksandrov, V. M. and Kucherov, V. A. , Certain problems on the 

action of two stamps on an elastic strip. Inzh. zh. MTT, W4, 1968. 

2. Aleksandrov, V. M. and Vorovich, I. I. , The action of a die on an elas- 

tic layer of finite thickness. PMM Vol. 24, N*2, 1960. 

3. U fliand, Ia. S. , Integral Transformations in the Problems of the Theory of Elas- 

ticity. L., “Nauka”, 1967. 

4. Gradshtein, I. S. and Ryzhik. I. M., Tables of Integrals, Sums, Series and 

Products. M., Fizmatgiz, 1963. 

5. Shtaerman, I. Ia., Contact Problem of the Theory of Elasticity. M., Gostekh- 
izdat, 1949. 

6. Panasiuk, V. V., Limit Equilibrium in Brittle Bodies with Cracks. Kiev, Nau- 
kova Dumka, 1968. 

7. Smetanin, B. I., Some problems on slits in elastic wedges and layers. Inzh. zh. 

MTT, W2, 1968. 

8. Markuzon, I. A., On splitting of a brittle body by a wedge of finite length. 
PMM Vol.25, N0g. 1961. 

Translated by L. K. 

CONVERClENCE OF THE PROBLEM OF LIMIT EQUILIBRIUM 
PMM Vol. 34, No2, 1970, pp. 370-372 

A. n/r. PROTSENKO 
(Moscow) 

(Received September 11, 1968) 

The theory of limit equilibrium of a perfectly plastic body n] usually deals with the 
systems possessing a finite number of degrees of freedom. The results obtained for the 

models of finite dimensions can be extended to the problems of limit equilibrium of 

solid bodies, using the methods of mathematical programing. 
In the present paper we consider a perfectly plastic body of finite volume 11~ with sur- 

face S. A load proportional to the parameter P is applied at a part of the surface deno- 
ted by S,_ Conditions of zero displacements ui = 0 (i = 1,2,3) (u cienotes the rate of 
displacement vector) are given at the remainder S, of the surface. The stress field must 

satisfy the equations of equilibrium and the following boundary conditions on S, 
Gij, i = 0, sijvj - Phi = 0 (1) 

Conditions of plasticity are assumed to have the form of a convex operator f(o) << 0. 
Under these conditions the problem of limit equilibrium in static formulation consists 
in determination of P* = sup t)(a). This corresponds to the generalized Lagrange’s 
functional /J2] 


